5,952 research outputs found

    Quantum Hall to Insulator Transition in the Bilayer Quantum Hall Ferromagnet

    Get PDF
    We describe a new phase transition of the bilayer quantum Hall ferromagnet at filling fraction ν=1\nu = 1. In the presence of static disorder (modeled by a periodic potential), bosonic S=1/2S=1/2 spinons can undergo a superfluid-insulator transition while preserving the ferromagnetic order. The Mott insulating phase has an emergent U(1) photon, and the transition is between Higgs and Coulomb phases of this photon. Physical consequences for charge and counterflow conductivity, and for interlayer tunneling conductance in the presence of quenched disorder are discussed.Comment: 4 pages, no figure

    Metallic spin glasses

    Full text link
    Recent work on the zero temperature phases and phase transitions of strongly random electronic system is reviewed. The transition between the spin glass and quantum paramagnet is examined, for both metallic and insulating systems. Insight gained from the solution of infinite range models leads to a quantum field theory for the transition between a metallic quantum paramagnetic and a metallic spin glass. The finite temperature phase diagram is described and crossover functions are computed in mean field theory. A study of fluctuations about mean field leads to the formulation of scaling hypotheses.Comment: Contribution to the Proceedings of the ITP Santa Barbara conference on Non-Fermi liquids, 25 pages, requires IOP style file

    Putting competing orders in their place near the Mott transition

    Get PDF
    We describe the localization transition of superfluids on two-dimensional lattices into commensurate Mott insulators with average particle density p/q (p, q relatively prime integers) per lattice site. For bosons on the square lattice, we argue that the superfluid has at least q degenerate species of vortices which transform under a projective representation of the square lattice space group (a PSG). The formation of a single vortex condensate produces the Mott insulator, which is required by the PSG to have density wave order at wavelengths of q/n lattice sites (n integer) along the principle axes; such a second-order transition is forbidden in the Landau-Ginzburg-Wilson framework. We also discuss the superfluid-insulator transition in the direct boson representation, and find that an interpretation of the quantum criticality in terms of deconfined fractionalized bosons is only permitted at special values of q for which a permutative representation of the PSG exists. We argue (and demonstrate in detail in a companion paper: L. Balents et al., cond-mat/0409470) that our results apply essentially unchanged to electronic systems with short-range pairing, with the PSG determined by the particle density of Cooper pairs. We also describe the effect of static impurities in the superfluid: the impurities locally break the degeneracy between the q vortex species, and this induces density wave order near each vortex. We suggest that such a theory offers an appealing rationale for the local density of states modulations observed by Hoffman et al. (cond-mat/0201348) in STM studies of the vortex lattice of BSCCO, and allows a unified description of the nucleation of density wave order in zero and finite magnetic fields. We note signatures of our theory that may be tested by future STM experiments.Comment: 35 pages, 16 figures; (v2) part II is cond-mat/0409470; (v3) added new appendix and clarifying remarks; (v4) corrected typo

    Quantum criticality of U(1) gauge theories with fermionic and bosonic matter in two spatial dimensions

    Get PDF
    We consider relativistic U(1) gauge theories in 2+1 dimensions, with N_b species of complex bosons and N_f species of Dirac fermions at finite temperature. The quantum phase transition between the Higgs and Coulomb phases is described by a conformal field theory (CFT). At large N_b and N_f, but for arbitrary values of the ratio N_b/N_f, we present computations of various critical exponents and universal amplitudes for these CFTs. We make contact with the different spin-liquids, charge-liquids and deconfined critical points of quantum magnets that these field theories describe. We compute physical observables that may be measured in experiments or numerical simulations of insulating and doped quantum magnets.Comment: 30 pages, 8 figure

    Thermodynamic Properties of XXZ model in a Transverse Field

    Full text link
    We have numerically studied the thermodynamic properties of the spin 1/2 XXZ chain in the presence of a transverse (non commuting) magnetic field. The thermal, field dependence of specific heat and correlation functions for chains up to 20 sites have been calculated. The area where the specific heat decays exponentially is considered as a measure of the energy gap. We have also obtained the exchange interaction between chains in a bulk material using the random phase approximation and derived the phase diagram of the three dimensional material with this approximation. The behavior of the structure factor at different momenta verifies the antiferromagnetic long range order in y-direction for the three dimensional case. Moreover, we have concluded that the Low Temperature Lanczos results [M. Aichhorn et al., Phys. Rev. B 67, 161103(R) (2003)] are more accurate for low temperatures and closer to the full diagonalization ones than the results of Finite Temperature Lanczos Method [J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994)].Comment: 7 pages, 10 eps figure

    Quench dynamics across quantum critical points

    Get PDF
    We study the quantum dynamics of a number of model systems as their coupling constants are changed rapidly across a quantum critical point. The primary motivation is provided by the recent experiments of Greiner et al. (Nature 415, 39 (2002)) who studied the response of a Mott insulator of ultracold atoms in an optical lattice to a strong potential gradient. In a previous work (cond-mat/0205169), it had been argued that the resonant response observed at a critical potential gradient could be understood by proximity to an Ising quantum critical point describing the onset of density wave order. Here we obtain numerical results on the evolution of the density wave order as the potential gradient is scanned across the quantum critical point. This is supplemented by studies of the integrable quantum Ising spin chain in a transverse field, where we obtain exact results for the evolution of the Ising order correlations under a time-dependent transverse field. We also study the evolution of transverse superfluid order in the three dimensional case. In all cases, the order parameter is best enhanced in the vicinity of the quantum critical point.Comment: 10 pages, 6 figure

    Bridging the Testing Speed Gap: Design for Delay Testability

    Get PDF
    The economic testing of high-speed digital ICs is becoming increasingly problematic. Even advanced, expensive testers are not always capable of testing these ICs because of their high-speed limitations. This paper focuses on a design for delay testability technique such that high-speed ICs can be tested using inexpensive, low-speed ATE. Also extensions for possible full BIST of delay faults are addresse

    Spin dynamics across the superfluid-insulator transition of spinful bosons

    Full text link
    Bosons with non-zero spin exhibit a rich variety of superfluid and insulating phases. Most phases support coherent spin oscillations, which have been the focus of numerous recent experiments. These spin oscillations are Rabi oscillations between discrete levels deep in the insulator, while deep in the superfluid they can be oscillations in the orientation of a spinful condensate. We describe the evolution of spin oscillations across the superfluid-insulator quantum phase transition. For transitions with an order parameter carrying spin, the damping of such oscillations is determined by the scaling dimension of the composite spin operator. For transitions with a spinless order parameter and gapped spin excitations, we demonstrate that the damping is determined by an associated quantum impurity problem of a localized spin excitation interacting with the bulk critical modes. We present a renormalization group analysis of the quantum impurity problem, and discuss the relationship of our results to experiments on ultracold atoms in optical lattices.Comment: 43 pages (single-column format), 8 figures; v2: corrected discussion of fixed points in Section V

    A low-speed BIST framework for high-performance circuit testing

    Get PDF
    Testing of high performance integrated circuits is becoming increasingly a challenging task owing to high clock frequencies. Often testers are not able to test such devices due to their limited high frequency capabilities. In this article we outline a design-for-test methodology such that high performance devices can be tested on relatively low performance testers. In addition, a BIST framework is discussed based on this methodology. Various implementation aspects of this technique are also addresse

    Holographic Quantum Critical Transport without Self-Duality

    Get PDF
    We describe general features of frequency-dependent charge transport near strongly interacting quantum critical points in 2+1 dimensions. The simplest description using the AdS/CFT correspondence leads to a self-dual Einstein-Maxwell theory on AdS_4, which fixes the conductivity at a frequency-independent self-dual value. We describe the general structure of higher-derivative corrections to the Einstein-Maxwell theory, and compute their implications for the frequency dependence of the quantum-critical conductivity. We show that physical consistency conditions on the higher-derivative terms allow only a limited frequency dependence in the conductivity. The frequency dependence is amenable to a physical interpretation using transport of either particle-like or vortex-like excitations.Comment: 42 pages, 7 figures. A new figure showing the frequency dependence of EM dual conductivity and few references added. Abstract, introduction, section 5 and discussion extended. To appear in Phys.Rev.
    • …
    corecore